Jumat, 19 Maret 2010

Fluida Statis dan Fluida Dinamis

Fluida Statis dan Fluida Dinamis

Pengertian Fluida

Dalam fisika, fluida diartikan sebagai suatu zat yang dapat mengalir. Anda mungkin pernah belajar di sekolah bahwa materi yang kita temui dalam kehidupan sehari-hari terdiri dari zat padat, cair dan gas. Nah, istilah fluida mencakup zat cair dan gas, karena zat cair seperti air atau zat gas seperti udara dapat mengalir. Zat padat seperti batu atau besi tidak dapat mengalir sehingga tidak bisa digolongkan dalam fluida. Untuk lebih memahami penjelasan gurumuda, alangkah baiknya jika kita tinjau beberapa contoh dalam kehidupan sehari-hari. Ketika dirimu mandi, dirimu pasti membutuhkan air. Untuk sampai ke bak penampung, air dialirkan baik dari mata air atau disedot dari sumur. Air merupakan salah satu contoh zat cair. Masih ada contoh zat cair lainnya seperti minyak pelumas, susu dan sebagainya. Semuanya zat cair itu dapat kita kelompokan ke dalam fluida karena sifatnya yang dapat mengalir dari satu tempat ke tempat yang lain.

Selain zat cair, zat gas juga termasuk fluida. zat gas juga dapat mengalir dari satu satu tempat ke tempat lain. Hembusan angin merupakan contoh udara yang berpindah dari satu tempat ke tempat lain.

Zat padat tidak dapat digolongkan ke dalam fluida karena zat padat tidak dapat mengalir. Batu atau besi tidak dapat mengalir seperti air atau udara. Hal ini dikarenakan zat pada t cenderung tegar dan mempertahankan bentuknya sedangkan fluida tidak mempertahankan bentuknya tetapi mengalir. Selain zat padat, zat cair dan zat gas, terdapat suatu jenis zat lagi yang dinamakan plasma. Plasma merupakan zat gas yang terionisasi dan sering dinamakan sebagai “wujud keempat dari materi”. Mengenai plasma dapat anda pelajari di perguruan tinggi. Yang pasti, plasma juga tidak dapat digolongkan ke dalam fluida.

Fluida merupakan salah satu aspek yang penting dalam kehidupan kita sehari-hari. Setiap hari kita menghirupnya, meminumnya dan bahkan terapung atau teggelam di dalamnya. Setiap hari pesawat udara terbang melaluinya, kapal laut mengapung di atasnya; demikian juga kapal selam dapat mengapung atau melayang di dalamnya. Air yang kita minum dan udara yang kita hirup juga bersirkulasi di dalam tubuh kita setiap saat, hingga kadang tidak kita sadari. Jika ingin menikmati bagaimana indahnya konsep mekanika fulida bekerja, pergilah ke pantai.

Fluida statis

Pada penjelasan panjang lebar di atas, gurumuda telah menerangkan makna fluida yang menjadi pokok bahasan kita kali ini. Nah, dalam mempelajari Fluida, kita memilahnya menjadi dua bagian yakni Fluida statis (Fluida diam) dan Fluida Dinamis (Fluida bergerak). Kataya fluida bergerak, kok ada fluida yang diam ?Jangan bingung, fluida memang merupakan zat yang dapat mengalir. Yang kita tinjau dalam Fluida statis adalah ketika fluida yang sedang diam pada keadaan setimbang. Jadi kita meninjau fluida ketika tidak sedang bergerak. Pada Fluida Dinamis, kita akan meninjau fluida ketika bergerak.


Fluida dinamis

Aliran fluida secara umum bisa kita bedakan menjadi dua macam, yakni aliran lurus alias laminar dan aliran turbulen. Aliran lurus bisa kita sebut sebagai aliran mulus, karena setiap partikel fluida yang mengalir tidak saling berpotongan. Salah satu contoh aliran laminar adalah naiknya asap dari ujung rokok yang terbakar. Mula-mula asap naik secara teratur (mulus), beberapa saat kemudian asap sudah tidak bergerak secara teratur lagi tetapi berubah menjadi aliran turbulen. Aliran turbulen ditandai dengan adanya linkaran-lingkaran kecil dan menyerupai pusaran dan kerap disebut sebagai arus eddy. Contoh lain dari aliran turbulen adalah pusaran air.

Energi Kinetik Rotasi

Jika energi kinetik translasi merupakan energi yang dimiliki oleh benda-benda yang bergerak pada lintasan lurus, maka energi kinetik rotasi merupakan energi yang dimiliki oleh benda yang melakukan gerak rotasi. Bedanya, dalam gerak lurus kita menganggap setiap benda sebagai partikel tunggal, sedangkan dalam gerak rotasi, setiap benda dianggap sebagai benda tegar (Benda dianggap terdiri dari banyak partikel. Mengenai hal ini sudah gurumuda jelaskan pada pokok bahasan momen inersia).

Persamaan energi kinetik rotasi mirip dengan rumus energi kinetik. Kalau dalam gerak lurus, setiap benda (benda dianggap partikel tunggal) mempunyai massa (m), maka dalam gerak rotasi, setiap benda tegar mempunyai momen inersia (I). Temannya massa tuh momen inersia. Kalau dalam gerak lurus ada kecepatan, maka dalam gerak rotasi ada kecepatan sudut. Secara matematis, energi kinetik rotasi benda tegar, dinyatakan dengan persamaan :


EK rotasi = ½ I ��2

Keterangan:

EK = Energi Kinetik

I = Momen Inersia

�� = Kecepatan sudut

Persamaan Energi Kinetik Rotasi benda tegar yang sudah gurumuda tulis di atas, sebenarnya bisa kita turunkan dari persamaan energi kinetik translasi.

Setiap benda tegar itu dianggap terdiri dari partikel-partikel. Untuk mudahnya perhatikan ilustrasi di bawah.

energi-kinetik-rotasi-b

Ini contoh sebuah benda tegar. Benda tegar bisa dianggap tersusun dari partikel-partikel. Pada gambar, partikel diwakili oleh titik berwarna hitam. Partikel-partikel tersebar di seluruh bagian benda itu. Jarak setiap partikel ke sumbu rotasi berbeda-beda. Pada gambar, sumbu rotasi diwakili oleh garis berwarna biru.

Ketika benda tegar berotasi, semua partikel yang tersebar di seluruh bagian benda itu juga berotasi. Ingat bahwa setiap partikel mempunyai massa (m). Ketika benda tegar berotasi, setiap partikel itu juga bergerak dengan kecepatan (v) tertentu. Kecepatan setiap partikel bergantung pada jaraknya dari sumbu rotasi. Semakin jauh sebuah partikel dari sumbu rotasi, semakin cepat partikel itu bergerak (kecepatannya besar). Sebaliknya, semakin dekat partikel dari sumbu rotasi, semakin lambat partikel itu bergerak (kecepatannya kecil). Untuk membantumu memahami penjelasan gurumuda ini, silahkan mendorong pintu rumah. Dibuktikan sendiri, kalo dirimu belum percaya…

Ketika kita mendorong pintu, pintu juga berotasi alias berputar pada sumbu. Engsel yang menghubungkan pintu dengan tembok berfungsi sebagai sumbu rotasi. Nah, ketika pintu berputar, bagian tepi pintu bergerak lebih cepat (kecepatannya lebih besar). Sebaliknya, bagian pintu yang berada di dekat engsel bergerak lebih pelan (kecepatannya lebih kecil). Jadi ketika sebuah benda berotasi, kecepatan (v) setiap partikel berbeda-beda, tergantung jaraknya dari sumbu rotasi.

Karena setiap partikel mempunyai massa (m) dan kecepatan (v), maka kita bisa mengatakan bahwa ketika sebuah benda tegar berotasi, semua partikel yang menyusun benda itu memiliki energi kinetik (energi kinetik = energi kinetik translasi… jangan lupa ya). Nah, total energi kinetik semua partikel yang menyusun benda tegar = energi kinetik benda tegar. Secara matematis, bisa ditulis sebagai berikut :

EK benda tegar = Total semua Energi Kinetik partikel

EK benda tegar = EK1 + EK2 + EK3 + …. + EKn

EK benda tegar = ½ m1v12 + ½ m2v22 + ½ m3v32 + …. + ½ mnvn2

Keterangan :

EK1 = ½ m1v12 = Energi Kinetik Partikel 1

EK2 = ½ m2v22 = Energi Kinetik Partikel 2

EK3 = ½ m3v32 = Energi Kinetik Partikel 3

Karena partikel yang menyusun benda tegar sangat banyak, maka kita cukup menulis titik-titik (…..)

EKn = ½ mnvn2 = Energi Kinetik partikel yang terakhir

Persamaan di atas bisa kita tulis lagi seperti ini :

energi-kinetik-rotasi-cWalaupun kecepatan linear setiap partikel berbeda-beda, kecepatan sudut semua partikel itu selalu sama. Dengan kata lain, ketika sebuah benda tegar berotasi, kecepatan sudut semua bagian benda itu selalu sama. Hubungan antara kecepatan linear dan kecepatan sudut, dinyatakan dengan persamaan :

energi-kinetik-rotasi-d

Karena kecepatan sudut semua partikel sama, maka persamaan ini bisa ditulis menjadi :

energi-kinetik-rotasi-e

Ini adalah persamaan energi kinetik rotasi benda tegar… Satuan energi kinetik rotasi = joule

Tekanan

Barometer air raksa sebagai pengukur tekanan udara dalam satuan milibar

Tekanan (p) adalah satuan fisika untuk menyatakan gaya (F) per satuan luas (A).

p = \frac{F}{A}

Satuan tekanan sering digunakan untuk mengukur kekuatan dari suatu cairan atau gas.

Satuan tekanan dapat dihubungkan dengan satuan volume (isi) dan suhu. Semakin tinggi tekanan di dalam suatu tempat dengan isi yang sama, maka suhu akan semakin tinggi. Hal ini dapat digunakan untuk menjelaskan mengapa suhu di pegunungan lebih rendah dari pada di dataran rendah, karena di dataran rendah tekanan lebih tinggi.

Rumus dari tekanan dapat juga digunakan untuk menerangkan mengapa pisau yang diasah dan permukaannya menipis menjadi tajam. Semakin kecil luas permukaan, dengan gaya yang sama akan dapatkan tekanan yang lebih tinggi.

Tekanan udara dapat diukur dengan menggunakan barometer.

Tekanan Hidrostatis




Hukum Utama Hidrostatis

Hukum Pascal

Hukum Archimedes






Momentum Sudut dan Rotasi Benda Tegar

Momen Gaya

Pada gerak lurus atau gerak translasi, faktor yang menyebabkan adanya gerak adalah gaya (F). Sedangkan pada gerak rotasi atau gerak melingkar, selain gaya (F), ada faktor lain yang menyebabkan benda itu bergerak rotasi yaitu lengan gaya (l) yang tegak lurus dengan gaya.

Secara matematis, momen gaya dirumuskan

τ = F x l

τ = F . l

Jika antara lengan gaya l dan gaya F tidak tegak lurus maka

τ = F . l sin θ

dimana θ adalah sudut antara lengan gaya l dengan gaya F.

Lengan gaya merupakan jarak antara titik tumpuan atau poros ke titik dimana gaya itu bekerja. Jika gaya dikenakan berada di ujung lengan maka bisa kita katakan lengan gaya ( l ) sama dengan jari-jari lingkaran (r).

Sehingga momen gaya dapat juga kita tulis

τ = F . r

Momen inersia

Momen inersia (satuan SI kg m2) adalah ukuran ketahanan objek terhadap perubahan laju rotasinya. Besaran ini adalah analog rotasi daripada massa. Dengan kata lain, besaran ini adalah kelembaman sebuah benda tegar yang berputar terhadap rotasinya. Momen inersia berperan dalam dinamika rotasi seperti massa dalam dinamika dasar, dan menentukan hubungan antara momentum sudut dan kecepatan sudut, momen gaya dan percepatan sudut, dan beberapa besaran lain. Meskipun pembahasan skalar terhadap momen inersia, pembahasan menggunakan pendekatan tensor memungkinkan analisis sistem yang lebih rumit seperti gerakan giroskopik.

Lambang I dan kadang-kadang juga J biasanya digunakan untuk merujuk kepada momen inersia.

Konsep ini diperkenalkan oleh Euler dalam bukunya a Theoria motus corporum solidorum seu rigidorum pada tahun 1730.[1] Dalam buku tersebut, dia mengupas momen inersia dan banyak konsep terkait.


Definisi skalar

Definisi sederhana momen inersia (terhadap sumbu rotasi tertentu) dari sembarang objek, baik massa titik atau struktur tiga dimensi, diberikan oleh rumus:

I = \int r^2 \,dm\,\!

di mana m adalah massa dan r adalah jarak tegak lurus terhadap sumbu rotasi.

Analisis

Momen inersia (skalar) sebuah massa titik yang berputar pada sumbu yang diketahui didefinisikan oleh

I \triangleq  m r^2\,\!

Momen inersia adalah aditif. Jadi, untuk sebuah benda tegar yang terdiri atas N massa titik mi dengan jarak ri terhadap sumbu rotasi, momen inersia total sama dengan jumlah momen inersia semua massa titik:

I \triangleq  \sum_{i=1}^{N} {m_{i} r_{i}^2}\,\!

Untuk benda pejal yang dideskripsikan oleh fungsi kerapatan massa ρ(r), momen inersia terhadap sumbu tertentu dapat dihitung dengan mengintegralkan kuadrat jarak terhadap sumbu rotasi, dikalikan dengan kerapatan massa pada suatu titik di benda tersebut:

I \triangleq   \iiint_V \|\mathbf{r}\|^2 \,\rho(\mathbf{r})\,dV \!

di mana

V adalah volume yang ditempati objek
ρ adalah fungsi kerapatan spasial objek
r = (r,θ,φ), (x,y,z), atau (r,θ,z) adalah vektor (tegaklurus terhadap sumbu rotasi) antara sumbu rotasi dan titik di benda tersebut.
Diagram perhitungan momen inersia sebuah piringan. Di sini k adalah 1/2 dan \mathbf{r} adalah jari-jari yang digunakan untuk menentukan momen inersia

Berdasarkan analisis dimensi saja, momen inersia sebuah objek bukan titik haruslah mengambil bentuk:

 I = k\cdot M\cdot {R}^2 \,\!

di mana

M adalah massa
R adalah jari-jari objek dari pusat massa (dalam beberapa kasus, panjang objek yang digunakan)
k adalah konstanta tidak berdimensi yang dinamakan "konstanta inersia", yang berbeda-beda tergantung pada objek terkait.

Konstanta inersia digunakan untuk memperhitungkan perbedaan letak massa dari pusat rotasi. Contoh:


Titik Berat

Telah dikatakan sebelumnya bahwa suatu benda tegar dapat mengalami gerak translasi (gerak lurus) dan gerak rotasi. Benda tegar akan melakukan gerak translasi apabila gaya yang diberikan pada benda tepat mengenai suatu titik yang yang disebut titik berat.

Benda akan seimbang jika pas diletakkan di titik beratnya

Benda akan seimbang jika pas diletakkan di titik beratnya

Titik berat merupakan titik dimana benda akan berada dalam keseimbangan rotasi (tidak mengalami rotasi). Pada saat benda tegar mengalami gerak translasi dan rotasi sekaligus, maka pada saat itu titik berat akan bertindak sebagai sumbu rotasi dan lintasan gerak dari titik berat ini menggambarkan lintasan gerak translasinya.


Kesetimbangan
Fisika Kelas 1 > Statika
274

<> Sesudah >

Benda dikatakan mencapai kesetimbangan jika benda tersebut dalam keadaan diam/statis atau dalam keadaan bergerak beraturan/dinamis.

Ditinjau dari keadaannya, kesetimbangan terbagi dua, yaitu:

1.

Kesetimbangan Translasi (a = 0)

v = 0 (statis)

v = konstan (dinamis


å F = 0

å Fx = 0 ; å Fy = 0


2. Kesetimbangan Rotasi (alpha = 0)

w = 0 (statis)

w = konstan (dinamis)


å t = 0 ® pilih pada suatu titik dimana gaya-gaya yang bekerja terbanyak

Macam Kesetimbangan Statis :

1. Kesetimbangan Stabil : setelah gangguan, benda berada pada posisi semula
2. Kesetimbangan Labil : setelah gangguan, benda tidak kembali ke posisi semula
3. Kesetimbangan Indiferen (netral) : setelah gangguan, titik berat tetap benda tetap pada satu garis lurus seperti semula


Momentum Sudut dan Rotasi Benda Tegar

Momentum Sudut dan Rotasi Benda Tegar

Jika momentum linear adalah momentum yang dimiliki oleh benda-benda yang bergerak pada lintasan lurus, maka momentum sudut merupakan momentum yang dimiliki oleh benda-benda yang melakukan gerak rotasi. Dikatakan sudut, karena ketika melakukan gerak rotasi, setiap benda mengitari sudut tertentu. Dalam hal ini, benda berputar terhadap poros alias sumbu rotasi.

Persamaan momentum sudut itu mirip dengan persamaan momentum linear. Kita tinggal menggantikan besaran-besaran linear (besaran gerak lurus) pada persamaan momentum dengan besaran-besaran sudut (besaran gerak rotasi).

jika dalam gerak lurus terdapat besaran kecepatan, maka dalam gerak rotasi terdapat besaran kecepatan sudut. Untuk menurunkan persamaan momentum sudut, kita bisa menggantikan kecepatan (v), dengan kecepatan sudut (omega). Nah, sekarang kita langsung menulis persamaan alias rumus momentum sudut…

momentum-sudut-a



HUKUM KEKEKALAN MOMENTUM SUDUT

Momentum sudut yang telah kita pelajari sebelumnya, merupakan konsep yang penting dalam fisika. Momentum sudut merupakan dasar dari hukum kekekalan momentum sudut. btw, hukum itu berbeda dengan prinsip. Dalam fluida, kita mengenal prinsip archimedes, prinsip pascal dkk. Prinsip itu hanya berlaku untuk kondisi tertentu saja. Hukum itu berlaku universal alias umum.

Hukum Kekekalan Momentum Sudut menyatakan bahwa :

Jika Torsi total yang bekerja pada sebuah benda tegar = 0, maka momentum sudut benda tegar yang berotasi bernilai konstan.

Hukum kekekalan momentum sudut ini merupakan salah satu hukum kekekalan yang penting dalam fisika. Secara matematis, pernyataan Hukum Kekekalan momentum Sudut di atas bisa dibuktikan dengan mengoprek persamaan Hukum II Newton untuk gerak rotasi versi momentum.

momentum-sudut-g1

Keterangan :

momentum-sudut-h

Penerapan Kekekalan Momentum Sudut

Kekekalan momentum sudut ini biasa digunakan oleh pemain akrobat, penyelam atau penerjun, penari balet, pemain ice skating, kucing dkk


Benda Tegar

Benda tegar adalah benda yang bentuknya selalu tetap alias tidak berubah, di mana posisi setiap partikel pada benda tersebut relative selalu sama antara satu dengan yang lain.

Momen Inersia

Momen Inersia Benda Tegar

Secara umum, Momen Inersia setiap benda tegar bisa dinyatakan sebagai berikut :

momen-inersia-h

Benda tegar bisa kita anggap tersusun dari banyak partikel yang tersebar di seluruh bagian benda itu. Setiap partikel-partikel itu punya massa dan tentu saja memiliki jarak r dari sumbu rotasi. jadi momen inersia dari setiap benda merupakan jumlah total momen inersia setiap partikel yang menyusun benda itu.

Ini cuma persamaan umum saja. Bagaimanapun untuk menentukan Momen Inersia suatu benda tegar, kita perlu meninjau benda tegar itu ketika ia berotasi. Walaupun bentuk dan ukuran dua benda sama, tetapi jika kedua benda itu berotasi pada sumbu alias poros yang berbeda, maka Momen Inersia-nya juga berbeda.

momen-inersia-0

Ini contoh sebuah benda tegar. Benda-benda tegar bisa dianggap tersusun dari partikel-partikel. Pada gambar, partikel diwakili oleh titik berwarna hitam. Jarak setiap partikel ke sumbu rotasi berbeda-beda


Lingkaran tipis dengan jari-jari R dan bermassa M (sumbu rotasi terletak pada pusat)

momen-inersia-1

Lingkaran tipis ini mirip seperti cincin tapi cincin lebih tebal. Jadi semua partikel yang menyusun lingkaran tipis berada pada jarak r dari sumbu rotasi. Momen inersia lingkaran tipis ini sama dengan jumlah total momen inersia semua partikel yang tersebar di seluruh bagian lingkaran tipis.

Momen Inersia lingkaran tipis yang berotasi seperti tampak pada gambar di atas, bisa diturunkan sebagai berikut :

momen-inersia-1b

Perhatikan gambar di atas. Setiap partikel pada lingkaran tipis berada pada jarak r dari sumbu rotasi. dengan demikian : r1 = r2 = r3 = r4 = r5 = r6 = R

I = MR2

Ini persamaan momen inersia-nya.


Contoh soal :



Sebuah partikel bermassa 2 kg diikatkan pada seutas tali yang panjangnya 0,5 meter (lihat gambar di bawah). Berapa momen Inersia partikel tersebut jika diputar ?

momen-inersia-13


Momen inersianya berapa-kah ?

I = mr2

I = (2 kg) (0,5m)2

I = 0,5 kg m2