Rabu, 15 Desember 2010

GGL Induksi

GGL Induksi

Michael Faraday (1791-1867), seorang ilmuwan berkebangsaan Inggris, membuat hipotesis (dugaan) bahwa medan magnet seharusnya dapat menimbulkan arus listrik. Untuk membuktikan kebenaran hipotesis Faraday.
Berdasarkan percobaan, ditunjukkan bahwa gerakan magnet di dalam kumparan menyebabkan jarum galvanometer menyimpang. Jika kutub utara magnet digerakkan mendekati kumparan, jarum galvanometer menyimpang ke kanan. Jika magnet diam dalam kumparan, jarum galvanometer tidak menyimpang. Jika kutub utara magnet digerakkan menjauhi kumparan, jarum galvanometer menyimpang ke kiri. Penyimpangan jarum galvanometer tersebut menunjukkan bahwa pada kedua ujung kumparan terdapat arus listrik. Peristiwa timbulnya arus listrik seperti itulah yang disebut induksi elektromagnetik. Adapun beda potensial yang timbul pada ujung kumparan disebut gaya gerak listrik (GGL) induksi.
Terjadinya GGL induksi dapat dijelaskan seperti berikut. Jika kutub utara magnet didekatkan ke kumparan. Jumlah garis gaya yang masuk kumparan makin banyak. Perubahan jumlah garis gaya itulah yang menyebabkan terjadinya penyimpangan jarum galvanometer. Hal yang sama juga akan terjadi jika magnet digerakkan keluar dari kumparan. Akan tetapi, arah simpangan jarum galvanometer berlawanan dengan penyimpangan semula. Dengan demikian, dapat disimpulkan bahwa penyebab timbulnya GGL induksi adalah perubahan garis gaya magnet yang dilingkupi oleh kumparan.
Menurut Faraday, besar GGL induksi pada kedua ujung kumparan sebanding dengan laju perubahan fluks magnetik yang dilingkupi kumparan. Artinya, makin cepat terjadinya perubahan fluks magnetik, makin besar GGL induksi yang timbul. Adapun yang dimaksud fluks nmgnetik adalah banyaknya garis gaya magnet yang menembus suatu bidang.
Generator
Generator atau pembangkit listrik yang sederhana dapat ditemukan pada sepeda. Pada sepeda, biasanya dinamo digunakan untuk menyalakan lampu. Caranya ialah bagian atas dinamo (bagian yang dapat berputar) dihubungkan ke roda sepeda. Pada proses itulah terjadi perubalian energi gerak menjadi energi listrik. Generator (dinamo) merupakan alat yang prinsip kerjanya berdasarkan induksi elektromagnetik. Alat ini pertama kali ditemukan oleh Michael Faraday.
Berkebalikan dengan motor listrik, generator adalah mesin yang mengubah energi kinetik menjadi energi listrik. Energi kinetik pada generator dapat juga diperoleh dari angin atau air terjun. Berdasarkan arus yang dihasilkan. Generator dapat dibedakan menjadi dua rnacam, yaitu generator AC dan generator DC. Generator AC menghasilkan arus bolak-balik (AC) dan generator DC menghasilkan arus searah (DC). Baik arus bolak-balik maupun searah dapat digunakan untuk penerangan dan alat-alat pemanas.
Generator AC
Bagian utama generator AC terdiri atas magnet permanen (tetap), kumparan (solenoida). cincin geser, dan sikat. Pada generator. perubahan garis gaya magnet diperoleh dengan cara memutar kumparan di dalam medan magnet permanen. Karena dihubungkan dengan cincin geser, perputaran kumparan menimbulkan GGL induksi AC. OIeh karena itu, arus induksi yang ditimbulkan berupa arus AC. Adanya arus AC ini ditunjukkan oleh menyalanya lampu pijar yang disusun seri dengan kedua sikat. Sebagaimana percobaan Faraday
GGL induksi yang ditimbulkan oleh generator AC dapat diperbesar dengan cara:
memperbanyak lilitan kumparan,
menggunakan magnet permanen yang lebih kuat.
mempercepat perputaran kumparan, dan menyisipkan inti besi lunak ke dalam kumparan.
Contoh generator AC yang akan sering kita jumpai dalam kehidupan sehari-hari adalah dinamo sepeda. Bagian utama dinamo sepeda adalah sebuah magnet tetap dan kumparan yang disisipi besi lunak. Jika magnet tetap diputar, perputaran tersebut menimbulkan GGL induksi pada kumparan. Jika sebuah lampu pijar (lampu sepeda) dipasang pada kabel yang menghubungkan kedua ujung kumparan. lampu tersebut akan dilalui arus induksi AC. Akibatnya, lampu tersebut menyala. Nyala lampu akan makin terang jika perputaran magnet tetap makin cepat (laju sepeda makin kencang).
Generator DC
Prinsip kerja generator (dinamo) DC sama dengan generator AC. Namun, pada generator DC arah arus induksinya tidak berubah. Hal ini disebabkan cincin yang digunakan pada generator DC berupa cincin belah (komutator).
Transformator
Agar tidak berbahaya tegangan yang tinggi itu harus diturunkan terlebih dahulu sebelum arus listrik disalurkan ke rumah-rumah penduduk. Pada umumnya tegangan listrik yang disalurkan ke rumah-rumah penduduk ada dua macam, yaitu 220 volt dan 1l0 volt. Alat yang digunakan untuk menurunkan tegangan disebut transformator.
Bagian utama transformator adalah dua buah kumparan yang keduanya dililitkan pada sebuah inti besi lunak. Kedua kumparan tersebut memiliki jumlah lilitan yang berbeda. Kumparan yang dihubungkan dengan sumber tegangan AC disebut kumparan primer, sedangkan kumparan yang lain disebut kumparan sekunder.
Jika kumparan primer dihubungkan dengan sumber tegangan AC (dialiri arus listrik AC), besi lunak akan menjadi elektromagnet. Karena arus yang mengalir tersebut adalah arus AC, garis-garis gaya elektromagnet selalu berubah-ubah. Oleh karena itu, garis-garis gaya yang dilingkupi oleh kumparan sekunder juga berubah-ubah. Perubahan garis gaya itu menimbulkan GGL induksi pada kumparan sekunder. Hal itu menyebabkan pada kumparan sekunder mengalir arus AC (arus induksi).
Kita dapat rnembedakan transformator menjadi dua macam. yaitu transformator step up dan transformator step down. Transformator .step up adalah transformator yang jumlah lilitan primernya lebih kecil dari pada lilitan sekunder. Oleh karena itu, transformator step up dapat digunakun untuk menaikkan tegangan AC.

Gaya Lorentz

Gaya Lorentz

GAYA LORENTZ

Pada percobaan oersted telah dibuktikan pengaruh arus listrik terhadap kutub magnet, bagaimana pengaruh kutub magnet terhadap arus listrik akan dibuktikan dari percobaan berikut :

Seutas kawat PQ ditempatkan diantara kutub-kutub magnet ladam kedalam kawat dialirkan arus listrik ternyata kawat melengkung kekiri.

Gejala ini menunjukkan bahwa medan magnet mengerjakan gaya pada arus listrik, disebut Gaya Lorentz. Vektor gaya Lorentz tegak lurus pada I dan B. Arah gaya Lorentz dapat ditentukan dengan tangan kanan. Bila arah melingkar jari-jari tangan kanan sesuai dengan putaran dari I ke B, maka arah ibu jari menyatakan arah gaya Lorents.

gambar :

clip_image084

Besar Gaya Lorentz.

Hasil-hasil yang diperoleh dari percobaan menyatakan bahwa besar gaya Lorentz dapat dirumuskan sebagai :

F = B I clip_image086sin a

F = gaya Lorentz.

B = induksi magnetik medan magnet.

I = kuat arus.

clip_image086[1]= panjang kawat dalam medan magnet.

a = sudut yang diapit I dan B.

Satuan Kuat Arus.

Kedalam kawat P dan Q yang sejajar dialirkan arus listrik. Bila arah arus dalam kedua kawat sama, kawat itu saling menarik.

Penjelasannya sebagai berikut :

Dilihat dari atas arus listrik P menuju kita digambarkan sebagai arus listrik dalam kawat P menimbulkan medan magnet. Medan magnet ini mengerjakan gaya Lorentz pada arus Q arahnya seperti dinyatakan anak panah F. Dengan cara yang sama dapat dijelaskan gaya Lorentz yang bekerja pada arus listrik dalam kawat P.

clip_image087

Kesimpulan :

Arus listrik yang sejajar dan searah tarik-menarik dan yang berlawanan arah tolak- menolak.

Bila jarak kawat P dan Q adalah a, maka besar induksi magnetik arus P pada jarak a :

clip_image089

Besar gaya Lorentz pada arus dalam kawat Q

clip_image091

Besar gaya Lorentz tiap satuan panjang

clip_image093

clip_image095

clip_image097

F tiap satuan panjang dalam N/m.

Ip dan IQ dalam Ampere dan a dalam meter.

Bila kuat arus dikedua kawat sama besarnya, maka :

clip_image099

Untuk I = 1 Ampere dan a = 1 m maka F = 2.10-7 N/m

Kesimpulan :

1 Ampere adalah kuat arus dalam kawat sejajar yang jaraknya 1 meter dan menimbulkan gaya Lorentz sebesar 2.10-7

Pengertian Gaya Lorentz
Gaya Lorentz adalah gaya yang ditimbulkan oleh muatan listrik yang bergerak atau oleh arus listrik yang berada dalam suatu medan magnet (B). Arah gaya ini akan mengikuti arah maju skrup yang diputar dari vektor arah gerak muatan listrik (v) ke arah medan magnet (B), seperti yang terlihat dalam rumus berikut:


Keterangan:
F = gaya (Newton)
B = medan magnet (Tesla)
q = muatan listrik ( Coulomb)
v = arah kecepatan muatan (m/t)


Sebuah partikel bermuatan listrik yang bergerak dalam daerah medan magnet homogen akan mendapatkan gaya. Gaya ini juga dinamakan gaya Lorentz. Gerak partikel akan menyimpang searah dengan gaya lorentz yang mempengaruhi. Arah gaya Lorentz pada muatan yang bergerak dapat juga ditentukan dengan kaidah tangan kanan dari gaya Lorentz (F) akibat dari arus listrik, I dalam suatu medan magnet B. Ibu jari, menunjukan arah gaya Lorentz . Jari telunjuk, menunjukkan arah medan magnet ( B ). Jari tengah, menunjukkan arah arus listrik ( I ). Untuk muatan positif arah gerak searah dengan arah arus, sedang untuk muatan negatif arah gerak berlawanan dengan arah arus.

Jika besar muatan q bergerak dengan kecepatan v, dan I = q/t maka persamaan gaya adalah:
FL = I . ℓ . B sin θ
= q/t . ℓ . B sin θ
= q . ℓ/t . B sin θ
= q . v . B sin θ
*Karena ℓ/t = v
Sehingga besarnya gaya Lorentz yang dialami oleh sebuah muatan yang bergerak dalam daerah medan magnet dapat dicari dengan menggunakan rumus :
F = q . v . B sin θ
Keterangan:
F = gaya Lorentz dalam newton ( N )
q = besarnya muatan yang bergerak dalam coulomb ( C )
v = kecepatan muatan dalam meter / sekon ( m/s )
B = kuat medan magnet dalam Wb/m2 atau tesla ( T )
θ = sudut antara arah v dan B

Bila sebuah partikel bermuatan listrik bergerak tegak lurus dengan medan magnet homogen yang mempengaruhi selama geraknya, maka muatan akan bergerak dengan lintasan berupa lingkaran. Sebuah muatan positif bergerak dalam medan magnet B (dengan arah menembus bidang) secara terus menerus akan membentuk lintasan lingkaran dengan gaya Lorentz yang timbul menuju ke pusat lingkaran. Demikian juga untuk muatan negativ. Persamaan-persamaan yang memenuhi pada muatan yang bergerak dalam medan magnet homogen sedemikian sehinga membentuk lintasan lingkaran adalah :
*Gaya yang dialami akibat medan magnet : F = q . v . B
*Gaya sentripetal yang dialami oleh partikel : Dengan menyamakan kedua persamaan kia mendapatkan persamaan :

Medan Magnet

MEDAN MAGNET

Adakah lemari es di rumahmu? Jika ada, bukalah pintu lemari es tersebut lalu tutuplah kembali. Perhatikanlah, pintu itu dapat tertutup rapat walaupun tanpa selot. Mengapa bisa seperti itu? Ternyata, ada magnet yang dipasang di badan lemari es dan bingkai pintunya terbuat dari besi. Ketika pintu didekatkan, magnet akan segera menariknya. Akibatnya, timbullah gaya tarik yang menyebabkan pintu lemari es akan menutup. Mengapa besi dapat ditarik oleh magnet?

Berdasarkan kegiatan tersebut, ada dua jenis benda berdasarkan mudah tidaknya tertarik oleh magnet. Bahan dari besi atau baja dapat ditarik magnet. Bahan dari plastik dan kayu tidak dapat ditarik magnet. Coba sebutkan benda-benda di rumahmu yang mudah ditarik magnet! Kekuatan gaya magnet dapat menembus benda-benda tertentu. Benda-benda apa saja yang dapat ditembus gaya magnet? Lakukan percobaan berikut!

Gaya magnet masih berpengaruh terhadap benda-benda logam meskipun ada penghalang di antara magnet dan benda yang ditariknya. Besarnya daya tembus gaya magnet dipengaruhi oleh beberapa faktor, antara lain jenis penghalang, tebal tipisnya penghalang, dan kekuatan magnet. Selain itu, pengaruh gaya magnet juga ditentukan oleh jarak magnet dengan benda.

Kekuatan gaya tarik magnet tidaklah sama di setiap sisi atau bagiannya. Gaya magnet paling kuat terletak di kutub-kutub magnet. Perhatikan gambar di bawah ini! Daerah di sekitar magnet yang masih dipengaruhi oleh gaya magnet disebut medan magnet. Area medan magnet itu biasa ditunjukkan dengan garis-garis gaya magnet. Garis-garis gaya magnet tersebut saling bertemu di ujung kedua kutubnya.

Magnet mempunyai dua kutub. Pada keadaan bebas, magnet akan selalu menunjuk ke arah utara dan selatan. Ujung magnet yang mengarah ke utara disebut kutub utara, sedangkan ujung magnet yang mengarah ke selatan disebut kutub selatan. Biasanya kedua ujung magnet diberi warna yang berbeda untuk membedakan kedua kutub magnet itu. Apa yang terjadi jika dua buah kutub magnet saling didekatkan? Kutub-kutub magnet mempunyai sifat-sifat khusus. Saat kutub yang sama dari dua buah magnet batang saling didekatkan, keduanya akan saling menolak. Sebaliknya jika kutub yang berbeda dari dua magnet didekatkan, akan terjadi tarik-menarik. Perhatikan gambar di bawah!

17 - Gaya Gravitasi 1

Gaya tarik magnet banyak digunakan dalam kehidupan sehari-hari. Gaya tarik magnet digunakan pada berbagai macam alat, mulai dari alat yang sederhana hingga alat yang rumit. Magnet digunakan pada alat-alat berikut.

a. Ujung gunting untuk memudahkan mengambil jarum jahit.

b. Bel listrik untuk menggerakkan pemukul lonceng.

c. Papan catur agar buah catur tidak mudah terguling.

d. Kompas sebagai penunjuk arah utara-selatan.

e. Dinamo sepeda dan generator untuk membangkitkan tenaga listrik.

f. Alat untuk mengangkut benda-benda dari besi.

Magnet dibedakan menjadi dua macam berdasarkan cara terbentuknya. Magnet tersebut yaitu magnet alam dan magnet buatan. Magnet alam terjadi secara alami, contohnya magnet bumi. Magnet buatan merupakan magnet yang sengaja dibuat. Ada beberapa bentuk magnet buatan, misalnya magnet batang, tabung (silinder), jarum, huruf U, dan magnet berbentuk ladam (tapal kuda).

Benda-benda yang terbuat dari besi dan baja dapat dibuat menjadi magnet dengan cara-cara tertentu. Bagaimanakah cara membuat magnet dari benda-benda itu?

a. Cara Induksi

Pembuatan magnet secara induksi sangat mudah dilakukan. Akan tetapi, sifat kemagnetan hasil induksi ini bersifat sementara. Caranya dengan menempelkan benda-benda yang terbuat dari logam (besi atau baja) dengan magnet. Benda yang terbuat dari logam ini akan menjadi bersifat magnet. Namun, jika magnet dilepaskan, sifat kemagnetan benda tersebut juga akan hilang.

b. Cara Gosokan

Magnet yang digosokkan ke suatu batang besi atau baja dapat menyebabkan batang besi atau baja mempunyai sifat kemagnetan. Semakin lama waktu penggosokan, semakin lama pula sifat kemagnetan bertahan di dalam batang besi atau baja tersebut.

c. Dialiri Arus Listrik

Magnet dapat dibuat dengan cara mengalirkan arus listrik searah ke dalam suatu penghantar. Magnet yang ditimbulkan disebut elektromagnet. Elektromagnet pertama kali ditemukan oleh Hans Christian Oersted pada tahun 1819. Elektromagnet bersifat sementara. Artinya, jika arus listrik diputus, sifat magnet itu akan hilang. Kita dapat membuat elektromagnet mempunyai kekuatan lebih besar dengan menambah jumlah baterai dan menambah jumlah lilitan.

Berdasarkan uraian dan kegiatan yang telah kamu lakukan, dapat diperoleh kesimpulan berikut.

1. Magnet hanya menarik benda-benda tertentu, yaitu benda yang terbuat dari logam.

2. Apabila magnet didekatkan pada benda yang terbuat dari logam, akan timbul gaya gerak sehingga benda tersebut tertarik menuju magnet atau tertolak menjauhi magnet.

3. Apabila antara benda logam dengan magnet terdapat penghalang, pengaruh gaya magnet dipengaruhi oleh ketebalan penghalang, jarak antara benda logam dengan magnet, dan jenis benda penghalang.

Polarisasi Cahaya

Polarisasi Cahaya

Polarisasi Cahaya Polarisasi (Pengkutuban)

Polarisasi adalah peristiwa perubahan arah getar gelombang cahaya yang acak menjadi satu arah getar.

Polarisasi Gelombang menunjukkan arah medan listrik pada suatu titik yang dilewati oleh gelombang tersebut. Jenis polarisasi antena dapat dikategorikan berdasarkan polanya pada BIDANG yang TEGAK LURUS atau normal dengan sumbu propagasi.

► Gelombang yang dapat mengalami polarisasi hanyalah gelombang tranversal yang mempunyai arah getaran tegak lurus dengan arah perambatannya

Terpolarisasi atau terkutub artinya memiliki satu arah getar tertentu saja, seperti pada gambar berikut :

Simbol Cahaya alami, yang bukan sinar terpolarisasi adalah gambar sbb:

atau

Cahaya terpolarisasi didapatkan dengan cara sbb :

  1. Polarisasi Karena Pemantulan

Berkas sinar alami (sinar yang belum terpolarisasi) dijatuhkan dari medium udara, ke medium kaca (cermin datar). Dengan sudut datang i = 57o, maka sinar yang dipantulkan sudah terpolarisasi, seperti pada gambar berikut:



2. Polarisasi Karena Pemantulan dan Pembiasan

Berkas Sinar alami melalui suatu medium kaca,akan dipantulakna dan dibiaskan. Sinar perpolarisasi bila sudut pantuk dan sudut bias membentuk sudut 90, seperti pada gambar brikut :

Dari peristiwa pemantulan dan pembiasan akan diperoleh Rumus Brewster, Sbb :

ip + r = 9o, r = 90 -ip

n2/n1 = sin ip/sin r = sin ip/sin (90-ip) = sin ip/cos ip = tg ip

n2/n1 = tg ip


3. Polarisasi karena penyerapan selektif.
Polarisasi dengan penyerapan selektif diperoleh dengan memasang dua buah polaroid, yaitu

Polarisator dan Analisator. Polarisator berfungsi untuk menghasilkan cahaya terpolarisasi,

sedangkan Analisator untuk mengetahui apakah cahaya sudah terpolarisasi atau belum, seperti

pada gambar berikut



4. Polarisasi karena Bias Kembar

Polarisasi karena bias kembar dapat terjadi apabila cahaya melewati suatu bahan yang mempunyai indeks bias ganda atau lebih dari satu, misalnya pada kristal kalsit.

Cahaya yang lurus disebut cahaya biasa, yang memenuhi hukum Snellius dan cahaya ini tidak terpolarisasi. Sedangkan cahaya yang dibelokkan disebut cahaya istimewa karena tidak memenuhi hukum Snellius dan cahaya ini adalah cahaya yang terpolarisasi.

5. Polarisasi karena Hamburan
Polarisasi cahaya karena peristiwa hamburan dapat terjadi pada peristiwa terhamburnya cahaya matahari oleh partikel-partikel debu di atmosfer yang menyelubungi Bumi. Cahaya matahari yang terhambur oleh partikel debu dapat terpolarisasi. Itulah sebabnya pada hari yang cerah langit kelihatan berwarna biru. Hal itu disebabkan oleh warna cahaya biru dihamburkan paling efektif dibandingkan dengan cahaya-cahaya warna yang lainnya.


Penyerapan dan pemancaran kembali cahaya oleh partikel-partikel disebut hamburan.Hamburan dapat menyebabkan cahaya matahari tak terpolarisasi menjadi cahaya terpolarisasi sebagian atau terpolarisasi sempurna.Matahari tak terpolarisasi menyebabkan elektron-elektron dalam molekul penghambur bergetar pada satu bidang yang tegak lurus terhadap arah rambat cahaya.Elektron-elektron dalam molekul ini pada gilirannya meradiasikan kembali,gelombang-gelombang elektromagnetik dalam berbagai arah.Cahaya yang diradiasikan langsung tegak lurus bidang getaran elektron-elektron dalam molekul tak terpolarisasi(seperti cahaya yang menabrak molekul).Tetapi cahaya yang di radiasikan tegak lurus terhadap cahaya datang terpolarisasi sempurna,sedangkan cahaya yang di radiasikan dalam arah antara tegak lurus bidang getaran dan tegak lurus terhadap cahaya datang adalah terpolarisasi sebagian.Warna biru pada langit terjadi karena penghamburan pada panjang gelombang pendek lebih banyak dari panjang gelombang gelombang-panjang

Difraksi dan Interferensi

Difraksi dan Interferensi

Difraksi adalah penyebaran gelombang, contohnya cahaya, karena adanya halangan. Semakin kecil halangan, penyebaran gelombang semakin besar. Hal ini bisa diterangkan oleh prinsip Huygens. Pada animasi pada gambar sebelah kanan atas terlihat adanya pola gelap dan terang, hal itu disebabkan wavelet-wavelet baru yang terbentuk di dalam celah sempit tersebut saling berinterferensi satu sama lain.

Difraksi celah tunggal

Pendekatan numerik dari pola difraksi pada sebuah celah dengan lebar empat kali panjang gelombang planar insidennya.
Grafik dan citra dari sebuah difraksi celah tunggal

Sebuah celah panjang dengan lebar infinitesimal akan mendifraksi sinar cahaya insiden menjadi deretan gelombang circular, dan muka gelombang yang lepas dari celah tersebut akan berupa gelombang silinder dengan intensitas yang uniform.

Secara umum, pada sebuah gelombang planar kompleks yang monokromatik \Psi^\prime dengan panjang gelombang &lambda yang melewati celah tunggal dengan lebar d yang terletak pada bidang x′-y′, difraksi yang terjadi pada arah radial r dapat dihitung dengan persamaan:

\Psi = \int_{\mathrm{slit}} \frac{i}{r\lambda} \Psi^\prime e^{-ikr}\,d\mathrm{slit}

dengan asumsi sumbu koordinaat tepat berada di tengah celah, x′ akan bernilai dari -d/2\, hingga +d/2\,, dan y′ dari 0 hingga \infty.

Jarak r dari celah berupa:

r = \sqrt{\left(x - x^\prime\right)^2 + y^{\prime2} + z^2}
r = z \left(1 + \frac{\left(x - x^\prime\right)^2 + y^{\prime2}}{z^2}\right)^\frac{1}{2}

Sebuah celah dengan lebar melebihi panjang gelombang akan mempunyai banyak sumber titik (en:point source) yang tersebar merata sepanjang lebar celah. Cahaya difraksi pada sudut tertentu adalah hasil interferensi dari setiap sumber titik dan jika fasa relatif dari interferensi ini bervariasi lebih dari 2π, maka akan terlihat minima dan maksima pada cahaya difraksi tersebut. Maksima dan minima adalah hasil interferensi gelombang konstruktif dan destruktif pada interferensi maksimal.

Difraksi Fresnel/difraksi jarak pendek yang terjadi pada celah dengan lebar empat kali panjang gelombang, cahaya dari sumber titik pada ujung atas celah akan berinterferensi destruktif dengan sumber titik yang berada di tengah celah. Jarak antara dua sumber titik tersebut adalah λ / 2. Deduksi persamaan dari pengamatan jarak antara tiap sumber titik destruktif adalah:

\frac{d \sin(\theta)}{2}

Minima pertama yang terjadi pada sudut &theta minimum adalah:

d\,\sin\theta_\text{min} = \lambda

Difraksi jarak jauh untuk pengamatan ini dapat dihitung berdasarkan persamaan integral difraksi Fraunhofer menjadi:

I(\theta) = I_0 \,\operatorname{sinc}^2 ( d \sin\theta / \lambda )

dimana fungsi sinc berupa sinc(x) = sin(px)/(px) if x ? 0, and sinc(0) = 1.

[sunting] Difraksi celah ganda

Single & double slit experiment.jpg
Sketsa interferensi Thomas Young pada difraksi celah ganda yang diamati pada gelombang air.[19]

Pada mekanika kuantum, eksperimen celah ganda yang dilakukan oleh Thomas Young menunjukkan sifat yang tidak terpisahkan dari cahaya sebagai gelombang dan partikel. Sebuah sumber cahaya koheren yang menyinari bidang halangan dengan dua celah akan membentuk pola interferensi gelombang berupa pita cahaya yang terang dan gelap pada bidang pengamatan, walaupun demikian, pada bidang pengamatan, cahaya ditemukan terserap sebagai partikel diskrit yang disebut foton.[20][21]

Pita cahaya yang terang pada bidang pengamatan terjadi karena interferensi konstruktif, saat puncak gelombang (en:crest) berinterferensi dengan puncak gelombang yang lain, dan membentuk maksima. Pita cahaya yang gelap terjadi saat puncak gelombang berinterferensi dengan landasan gelombang (en:trough) dan menjadi minima. Interferensi konstruktif terjadi saat:

\frac{n\lambda}{a} = \frac{x}{L} \quad\Leftrightarrow\quad{n}{\lambda}=\frac{xa}{L}\;,

dimana

λ adalah panjang gelombang cahaya
a adalah jarak antar celah, jarak antara titik A dan B pada diagram di samping kanan
n is the order of maximum observed (central maximum is n = 0),
x adalah jarak antara pita cahaya dan central maximum (disebut juga fringe distance) pada bidang pengamatan
L adalah jarak antara celah dengan titik tengah bidang pengamatan

Persamaan ini adalah pendekatan untuk kondisi tertentu.[22] Persamaan matematika yang lebih rinci dari interferensi celah ganda dalam konteks mekanika kuantum dijelaskan pada dualitas Englert-Greenberger.

[sunting] Difraksi celah majemuk

Difraksi celah ganda (atas) dan difraksi celah 5 dari sinar laser
Difraksi sinar laser pada celah majemuk
Pola difraksi dari sinar laser dengan panjang gelombang 633 nm laser melalui 150 celah
Diagram dari difraksi dengan jarak antar celah setara setengah panjang gelombang yang menyebabkan interferensi destruktif

Difraksi celah majemuk (en:Diffraction grating) secara matematis dapat dilihat sebagai interferensi banyak titik sumber cahaya, pada kondisi yang paling sederhana, yaitu yang terjadi pada dua celah dengan pendekatan Fraunhofer, perbedaan jarak antara dua celah dapat dilihat pada bidang pengamatan sebagai berikut:

\ \Delta S={a} \sin \theta

Dengan perhitungan maksima:

\ {a} \sin \theta = n \lambda
dimana
\ n adalah urutan maksima
\ \lambda adalah panjang gelombang
\ a adalah jarak antar celah
and \ \theta adalah sudut terjadinya interferensi konstruktif

Dan persamaan minima:

 {a} \sin \theta = \lambda (n+1/2) \,.

Pada sinar insiden yang membentuk sudut θi terhadap bidang halangan, perhitungan maksima menjadi:

 a \left( \sin{\theta_n} + \sin{\theta_i} \right) = n \lambda.

Cahaya yang terdifraksi dari celah majemuk dapat dihitung dengan penjumlahan difraksi yang terjadi pada setiap celah berupa konvolusi dari pola difraksi dan interferensi.


Interferensi adalah penjumlahan superposisi dari dua gelombang cahaya atau lebih yang menimbulkan pola gelombang yang baru.

Interferensi dapat bersifat membangun dan merusak. Bersifat membangun jika beda fase kedua gelombang sama sehingga gelombang baru yang terbentuk adalah penjumlahan dari kedua gelombang tersebut.

Bersifat merusak jika beda fasenya adalah 180 derajat, sehingga kedua gelombang saling menghilangkan.

Syarat Interferensi Cahaya :

Kedua sumber cahaya harus bersifat kokeren (Kedua sumber cahaya mempunyai beda fase,frekuensi dan amplitude sama)

Thomas Young, seorang ahli fisika membuat dua sumber cahaya dari satu sumber cahaya, yang dijatukan pada dua buah celah sempit.

Satu sumber cahaya, dilewatkan pada dua celah sempit, sehingga cahaya yang melewati kedua celah itu, merupakan dua sumbeer cahaya baru

Hasil interferensi dari dua sinar/cahaya koheren menghasilkan pola terang dan gelap.

Secara matematika rumus untuk mendapatkan pola terang dan gelap Sbb:


S1 = Sumber cahaya

S2 dan S3, dua sumber cahaya baru., d = jarak antar dua sumber c

θ= sudut belok, a=l = jarak antara dua sumber terhadap layar
Interferensi maksimum/terang/konstruktif, terjadi bila :

atau

Keterangan :
P=jarak dari terang/gelap ke-m dengan terang pusat (meter)
d=jarak kedua sumber cahaya/celah(meter)
l=jarak antara sumber cahaya dengan layar (meter)
m=bilangan (1,2,3…dst)
l=panjang gelombang (meter, atau Amstrong A0=1.10-10meter)

Interferensi Minimum/Gelap/Destrutip, terjadi jika

atau

Contoh Soal :

  1. Percobaan Thomas Young, celah ganda berjarak 5 mm. Dibelakang celah yang jaraknya 2 m ditempatkan layar , celah disinari dengan cahaya dengan panjang gelombang 600 nm., maka jarak pola terang ke 3 dari pusat terang adalah….

a. 72 mm b. 7,2 mm c. 0,72 mm

d . 0,72 mm e. 0,007 mm

Diketahui : d = 5 mm, l = 2 m=2000 mm

λ= 600 nm = 7 x 10-5 mm, m = 3
Ditanyakan: p =……?
Jawab :

p. 5/200 = (2.3) 1/2 6.10-5…..p = 0,72 mm