Jumat, 19 Maret 2010

Momentum Sudut dan Rotasi Benda Tegar

Momen Gaya

Pada gerak lurus atau gerak translasi, faktor yang menyebabkan adanya gerak adalah gaya (F). Sedangkan pada gerak rotasi atau gerak melingkar, selain gaya (F), ada faktor lain yang menyebabkan benda itu bergerak rotasi yaitu lengan gaya (l) yang tegak lurus dengan gaya.

Secara matematis, momen gaya dirumuskan

τ = F x l

τ = F . l

Jika antara lengan gaya l dan gaya F tidak tegak lurus maka

τ = F . l sin θ

dimana θ adalah sudut antara lengan gaya l dengan gaya F.

Lengan gaya merupakan jarak antara titik tumpuan atau poros ke titik dimana gaya itu bekerja. Jika gaya dikenakan berada di ujung lengan maka bisa kita katakan lengan gaya ( l ) sama dengan jari-jari lingkaran (r).

Sehingga momen gaya dapat juga kita tulis

τ = F . r

Momen inersia

Momen inersia (satuan SI kg m2) adalah ukuran ketahanan objek terhadap perubahan laju rotasinya. Besaran ini adalah analog rotasi daripada massa. Dengan kata lain, besaran ini adalah kelembaman sebuah benda tegar yang berputar terhadap rotasinya. Momen inersia berperan dalam dinamika rotasi seperti massa dalam dinamika dasar, dan menentukan hubungan antara momentum sudut dan kecepatan sudut, momen gaya dan percepatan sudut, dan beberapa besaran lain. Meskipun pembahasan skalar terhadap momen inersia, pembahasan menggunakan pendekatan tensor memungkinkan analisis sistem yang lebih rumit seperti gerakan giroskopik.

Lambang I dan kadang-kadang juga J biasanya digunakan untuk merujuk kepada momen inersia.

Konsep ini diperkenalkan oleh Euler dalam bukunya a Theoria motus corporum solidorum seu rigidorum pada tahun 1730.[1] Dalam buku tersebut, dia mengupas momen inersia dan banyak konsep terkait.


Definisi skalar

Definisi sederhana momen inersia (terhadap sumbu rotasi tertentu) dari sembarang objek, baik massa titik atau struktur tiga dimensi, diberikan oleh rumus:

I = \int r^2 \,dm\,\!

di mana m adalah massa dan r adalah jarak tegak lurus terhadap sumbu rotasi.

Analisis

Momen inersia (skalar) sebuah massa titik yang berputar pada sumbu yang diketahui didefinisikan oleh

I \triangleq  m r^2\,\!

Momen inersia adalah aditif. Jadi, untuk sebuah benda tegar yang terdiri atas N massa titik mi dengan jarak ri terhadap sumbu rotasi, momen inersia total sama dengan jumlah momen inersia semua massa titik:

I \triangleq  \sum_{i=1}^{N} {m_{i} r_{i}^2}\,\!

Untuk benda pejal yang dideskripsikan oleh fungsi kerapatan massa ρ(r), momen inersia terhadap sumbu tertentu dapat dihitung dengan mengintegralkan kuadrat jarak terhadap sumbu rotasi, dikalikan dengan kerapatan massa pada suatu titik di benda tersebut:

I \triangleq   \iiint_V \|\mathbf{r}\|^2 \,\rho(\mathbf{r})\,dV \!

di mana

V adalah volume yang ditempati objek
ρ adalah fungsi kerapatan spasial objek
r = (r,θ,φ), (x,y,z), atau (r,θ,z) adalah vektor (tegaklurus terhadap sumbu rotasi) antara sumbu rotasi dan titik di benda tersebut.
Diagram perhitungan momen inersia sebuah piringan. Di sini k adalah 1/2 dan \mathbf{r} adalah jari-jari yang digunakan untuk menentukan momen inersia

Berdasarkan analisis dimensi saja, momen inersia sebuah objek bukan titik haruslah mengambil bentuk:

 I = k\cdot M\cdot {R}^2 \,\!

di mana

M adalah massa
R adalah jari-jari objek dari pusat massa (dalam beberapa kasus, panjang objek yang digunakan)
k adalah konstanta tidak berdimensi yang dinamakan "konstanta inersia", yang berbeda-beda tergantung pada objek terkait.

Konstanta inersia digunakan untuk memperhitungkan perbedaan letak massa dari pusat rotasi. Contoh:


Titik Berat

Telah dikatakan sebelumnya bahwa suatu benda tegar dapat mengalami gerak translasi (gerak lurus) dan gerak rotasi. Benda tegar akan melakukan gerak translasi apabila gaya yang diberikan pada benda tepat mengenai suatu titik yang yang disebut titik berat.

Benda akan seimbang jika pas diletakkan di titik beratnya

Benda akan seimbang jika pas diletakkan di titik beratnya

Titik berat merupakan titik dimana benda akan berada dalam keseimbangan rotasi (tidak mengalami rotasi). Pada saat benda tegar mengalami gerak translasi dan rotasi sekaligus, maka pada saat itu titik berat akan bertindak sebagai sumbu rotasi dan lintasan gerak dari titik berat ini menggambarkan lintasan gerak translasinya.


Kesetimbangan
Fisika Kelas 1 > Statika
274

<> Sesudah >

Benda dikatakan mencapai kesetimbangan jika benda tersebut dalam keadaan diam/statis atau dalam keadaan bergerak beraturan/dinamis.

Ditinjau dari keadaannya, kesetimbangan terbagi dua, yaitu:

1.

Kesetimbangan Translasi (a = 0)

v = 0 (statis)

v = konstan (dinamis


å F = 0

å Fx = 0 ; å Fy = 0


2. Kesetimbangan Rotasi (alpha = 0)

w = 0 (statis)

w = konstan (dinamis)


å t = 0 ® pilih pada suatu titik dimana gaya-gaya yang bekerja terbanyak

Macam Kesetimbangan Statis :

1. Kesetimbangan Stabil : setelah gangguan, benda berada pada posisi semula
2. Kesetimbangan Labil : setelah gangguan, benda tidak kembali ke posisi semula
3. Kesetimbangan Indiferen (netral) : setelah gangguan, titik berat tetap benda tetap pada satu garis lurus seperti semula


Tidak ada komentar:

Posting Komentar